Outline

Data flow networks 101 (3 slides)
VTK (20 slides)

Contracts (10 slides)

An architecture for big data (3 slides)

Outline

Data flow networks 101 (3 slides)
VTK (20 slides)

Contracts (10 slides)

An architecture for big data (3 slides)

Data flow networks 101

 Work is performed by a
pipeline

* A pipeline consists of data
objects and components
(sources, filters, and sinks)

> Pipeline execution begins with
a “pull”, which starts Update
phase

> Data flows from component to
component during the Execute
phase

/\

Update

File Reader
(Source)

1L

Slice Filter

1L

Contour
Filter

1l

Renderer
(Sink)

NIIX

Data flow networks: plusses

* Interoperability / Flexibility
* Extensible

Data flow networks: minuses

* Memory efficiency
* Performance efficiency

e Easy to add new algorithms, but hard to
extend the data model

Outline

Data flow networks 101 (3 slides)
VTK (20 slides)

Contracts (10 slides)

An architecture for big data (3 slides)

Visualization with VTK

Content from: Erik Vidholm, Univ of Uppsula, Sweden
David Gobbi, Robarts Research Institute, London, Ontario, Canada

Outline

e Whatis VTK?
e What can it be used for?

* How do | actually use it?

VTK — The Visualization ToolKit

* Open source, freely available software for 3D
computer graphics, image processing, and
visualization

* Managed by Kitware Inc.
e Use C++, Tcl/Tk, Python, Java

True visualization system

Visualization techniques for visualizing
— Scalar fields

— Vector fields
— Tensor fields

Polygon reduction
Mesh smoothing
lmage processing
Your own algorithms

Additional features

Parallel support (message passing,
multithreading)

Stereo support

Integrates easily with Motif, Qt, Tcl/Tk,
Python/Tk, X11, Windows, ...

Event handling
3D widgets

3D graphics

Surface rendering
Volume rendering

— Ray casting

— Texture mapping (2D)
— Volume pro support

Lights and cameras

Textures

Save render window to .png, .jpg, ...

(useful for movie creation)

Objects

* Data objects
— Next slide

* Process objects
— Source objects (vtkReader, vtkSphereSource)
— Filter objects (vtkContourFilter)
— Mapper objects (vtkPolyDataMapper)

Data model

vtkStructuredPoints

vikHyperOctree
vtkUniformGrid
vtkimageD ata
/ vtkLabelHierarchy
— vtkDataSet —

vtkPointSet

7

Cell Data & Point Data

vtkPolyD ata

vtkRectilinearGrid

vtkStructured Grid

vtkUnstructured Grid

L4 -
° P
™
.
VTK_VERTEX (=1) VTK_POLY VERTEX (=2) VTK_LINE (=3)
2
n+1
0 n-1 1. 3 .
.\,/.-/—.\‘ ! ! | e —
1 0 0 n
VTK_POLY LINE (=4) VTK_TRIANGLE (=5) VTK_TRIANGLE_ STRIP (=6)
n-2 2
; 2 3
n- . 3
L
Xj 1
0 1 0 1 0
VTK_POLYGON (=7) VTK_PIXEL (=8) VTK_QUAD (=9)

VTK_TETRA (=10) VTK_VOXEL (=11) VTK_HEXAHEDRON (=12)

W

|
1
0 0 !

VTK_WEDGE (=13) VTK_PYRAMID (=14)

6
2 -y 3 .\?5
0 ‘ \
1 /1
1 0 2 0 4

VTK_QUADRATIC_ EDGE VTK_QUADRATIC_TRIANGLE VTK_QUADRATIC_QUAD
(=21) (=22) (=23)

VTK_QUADRATIC TETRA VTK_QUADRATIC HEXAHEDRON
(=24) {=25)

Visualization continued

e Scalar algorithms
— Iso-contouring

— Color mapping
e Vector algorithms
— Hedgehogs
— Streamlines / streamtubes

* Tensor algorithms
— Tensor ellipsoids

The visualization pipeline

Visualization algorithms

FILTER MAPPING

_//

Interactive feedback

DISPLAY

Cone.py Pipeline Diagram (type "python Cone.py" to run)

Source

Data

!

Mapper

!

Actor

Y

7

pe

%

Renderer

Y

[=]=]

Window

Y

Interactor

Either reads the data from a
file or creates the data from
scratch.

Moves the data from VTK
into OpenGL.

For setting colors, surface
properties, and the position
of the object.

The rectangle of the
computer screen that
VTK draws into.

The window, including title
bar and decorations.

Allows the mouse to be used
to interact wth the data.

from vtkpython import *

cone = vtkConeSource()
cone.SetResolution(10)

coneMapper = vtkPolyDataMapper()
coneMapper.SetInput(cone.GetOutput())

coneActor = vtkActor()
coneActor.SetMapper(coneMapper)

ren = vtkRenderer()
ren.AddActor(coneActor)

renWin = vtkRenderWindow()
renWin.SetWindowName("Cone")
renWin. SetSize(300,300)
renWin.AddRenderer(ren)

iren = vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
iren.Initialize()

iren. Start()

Imaging

* Supports streaming => huge datasets

e vtkimageTolmageFilter
— Diffusion
— High-pass / Low-pass (Fourier)
— Convolution
— Gradient (magnitude)
— Distance map
— Morphology
— Skeletons

Summary +

Free and open source
Create graphics/visualization applications fairly fast
Object oriented - easy to derive new classes

Build applications using "interpretive" languages Tcl,
Python, and Java

Many (state of the art) algorithms

Heavily tested in real-world applications
Large user base provides decent support
Commercial support and consulting available

Summary -

* Not a super-fast graphics engine due to portability
and C++ dynamic binding — you need a decent
workstation

* Very large class hierarchy => learning threshold might
be steep

 Many subtleties in usage

— Pipeline execution model
— Memory management

ImageReader

Data

!

GaussianSmooth|

Data

v

ImageMathematics

Data

!

ImageWriter

Y

ImageViewer

reader = vikBMPReader()
reader.SetFileName("image.bmp")

blur = vikimageGuassianSmooth()
blur.Setinput(reader.GetOutput())
blur.SetDimensionality(2)
blur.SetStandardDeviations(5.0, 5.0)
blur.SetRadiusFactors(10.0, 10.0)

subtract = vtkimageMathematics()
subtract.SetOperationToSubtracti()
subtract.Setinputi(reader.GetOutput())
subtract.Setinput2(blur.GetOutput())

writer = vikBMPWriter()
writer.Setlnput(subtract.GetOutput()
writer.SetFileName("image2.bmp")
writer.Write()

viewer = vitkimageViewer()
viewer.Setlnput(subtract.GetOutput())
viewer.SetColorWindow(255)
viewer.SetColorLevel(127.5)
viewer.Render()

Example — Vector field visualization

vtkStructuredGridReader reader
reader SetFileName "office.binary.vtk™

Create source for streamtubes
vtkPointSource seeds
seeds SetRadius 0.15
eval seeds SetCenter 0.1 2.1 0.5
seeds SetNumberOfPoints 6
vtkRungeKutta4 integ
vtkStreamLine streamer
streamer SetInput [reader GetOutput]
streamer SetSource [seeds GetOutput]
streamer SetMaximumPropagationTime 500
streamer SetStepLength 0.5
streamer SetlntegrationStepLength 0.05
streamer SetIntegrationDirectionToIntegrateBothDirections
streamer SetIntegrator integ

The visualization pipeline - example

vtkStructuredPointsReader

"hydrogen.vtk”

vtkPolyDataMapper
vtkActor

vtkMarchingCubes

vtkRenderer
vtkRenderWindow

vtkRenderWindowlInteractor

Python example: visualization
hydrogen molecule

File: isosurface.py
import vtk

Must call # image reader

reader = vtk.vtkStructuredPointsReader()
update FO\ reader.SetFileName("hydrogen.vtk")

read! | reader.Update()

bounding box

. - outline = vtk.vtkOutlineFilter()
P'Pelme_ [outline.SetInput(reader.GetOutput())
connections outlineMapper = vtk.vtkPolyDataMapper()

outlineMapper.SetInput(outline.GetOutput())
outlineActor = vtk.vtkActor()
outlineActor.SetMapper(outlineMapper)
outlineActor.GetProperty().SetColor(0.0,0.0,1.0)

Example continued

vtkContourFilte
chooses the
appropriate
method for the
data set

/'

iso surface

isosurface = vtk.vtkContourFilter()
isosurface.SetInput(reader.GetOutput())
isosurface.SetValue(0, .2)

isosurfaceMapper = vtk.vtkPolyDataMapper()
isosurfaceMapper.SetInput(isosurface.GetOutput())
isosurfaceMapper.SetColorModeToMapScalars()
isosurfaceActor = vtk.vtkActor()
isosurfaceActor.SetMapper(isosurfaceMapper)

slice plane

plane = vtk.vtkimageDataGeometryFilter()
plane.SetInput(reader.GetOutput())
planeMapper = vtk.vtkPolyDataMapper()
planeMapper.SetInput(plane.GetOutput())
planeActor = vtk.vtkActor()
planeActor.SetMapper(planeMapper)

Example continued

Creates a
legend
from the

data and a
lookup

table

a colorbar
scalarBar = vtk.vtkScalarBarActor()
scalarBar.SetTitle("Iso value")

renderer and render window
ren = vtk.vtkRenderer()
ren.SetBackground(.8, .8, .8)
renWin = vtk.vtkRenderWindow()
renWin.SetSize(400, 400)
renWin.AddRenderer(ren)

Example continued

The
RenderWindowlInteractor
contains functions for
mouse/keyboard
interaction

The renWin.Render()
calls Update() on the
renderer, which calls
Update() for all its
actors, which calls...

render window interactor

iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)

add the actors
ren.AddActor(outlineActor)
ren.AddActor(isosurfaceActor)
ren.AddActor(planeActor)
ren.AddActor(scalarBar)

this causes the pipeline to "execute”
renWin.Render()

initialize and start the interactor
iren.Initialize()
iren.Start()

The VTK file format

- Many modules to
write VTK files

vtk DataFile Version 2.0
Hydrogen orbital

ASCII

DATASET STRUCTURED_POINTS
DIMENSIONS 64 64 64

ORIGIN 32.5 32.5 32.5
SPACING 1.01.01.0
POINT_DATA 262144

SCALARS probability float
LOOKUP_TABLE default
0.0 0.0 0.01 0.01

VTK and C++

Build with CMake and your favorite compiler

CMake generates makefiles or project files for your
environment

Use the resulting file(s) to build your executable

With C++ you have full control and can derive own
classes, but you need to write many lines of code...

VTK resources

ww.vtk.org

— Download (source and binaries)
— Documentation

— Mailing lists

— Links

— FAQ, Search
ww.kitware.com

— VTK Textbook

— VTK User’s guide

— Mastering CMake

Iflcsnon T

Ird Edon

An Object-Ovlented Approach 10 30 Geaphics

31 Sehepeder
e R
Bl lorpesna

o 4 Camnamny
YR e

Outline

Data flow networks 101 (3 slides)
VTK (20 slides)

Contracts (10 slides)

An architecture for big data (3 slides)

Contracts are an extension to the

standard data flow network design.

Data Flow Networks “101”’:
Work is performed by a

pipeline

* A pipeline consists of data
objects and components
(sources, filters, and sinks)

> Pipeline execution begins with

a “pull”, which starts Update
phase

> Data flows from component to
component during the Execute
phase

/\

Update

Exec|—

/

| File Reader

(Source)

V2

1L

Slice Filter

\Y

N/ N[

VO

1L

Contour
Filter

1l

Renderer
(Sink)

> Contracts are coupled with the

Update phase

NIIX

Initial observations about
contracts.

A contract is simply a data structure
— The members of the data structure reflect the
optimizations

Optimizations are adaptively applied based on the final contract

Each component describes its impact on the pipeline

— Allows for effective management of hundreds of
components

— Allows for new, unforeseen components to be added
Combining contracts with the Update phase

—>seamlessly integrated into data flow networks
—>every component has a chance to modify the contract

Why are contracts important?

1) They allow for optimizations to be utilized in
a richly featured system

2) Is this important? Yes. Let’s look at the
impact of these optimizations. (If we believe
they are important, then contracts are
important.)

Operating on Optimal Subset of
Data

Get meta-data
Determine domains that

intersect slice
Restrict list of domains

to process 1n V(I+1)

Filter
(base class) ontract

(Contract *V(I))
(inheritance) / \\\ {

Hundreds return V(I+1);
of others)

Slice Filter

37

Operating on Optimal Subset of

Data

DO [D1 D2 D3
v v

V(I+1) iL

A Slice Filter
N iL
./ 3) Restrict list of domains
DO |DI1 |D2 |D3 to process in V(I+1)

38

The contract-based system provides
high flexibility for this optimization.

! P
T V(I+1)
A Slice Filter T Spherical
\4¢)) iL " Slice Filter
- V() 1T
V(I+1)
T Filter

Contour
wl 1

We studied performance using a
simulation of a Rayleigh-Taylor
Instability.

The techniques shown are not new

The performance increase motivates the importance of
optimizations

This, in turn, motivates the importance of contracts

40

Processing only the necessary
domains is a lucrative optimization.

Algorithm Processors Without With Speedup
Contracts Contracts
Contouring 32 41.1s 5.8s 7.1X\
(early)
Contouring 32 185.0s | 97.2s 1.9X
(late) \
Sicing | 32 | 253s | 3.2s | 7.9X \

41

What is the right technique for distributing
domains across processors?
* Two ways:
— Statically: make assighments before Execute phase
— Dynamically: adaptively during Execute phase

e Performance:

— Static: good chance of load imbalance
* As fast as slowest processor

— Dynamic: adaptively balancing load
e Obtains near optimal parallel efficiency
* Communication:
— Static: collective communication okay
— Dynamic: no collective communication

Contracts steer what load
balancing technique we use.

What load balancing technique should we use?
If we need collective communication = static
Otherwise, we want performance =2 dynamic

Contracts enable this

— During Update phase:

* Every filter can modify the contract to state whether or
not it needs collective communication

— Before Execute phase:

* Executive examines contract and decides which load
balancing technique to use.

Employing dynamic load balancing
Is a lucrative optimization.

Processors Static Dynamic Speedup
Load Load
Algorithm * Balancing | Balancing
Slicing 32 3.2S 4.0s 0.8X

Contouring 32 97.2s | 65.1s 1.5X

Thresholding| 64 |181.3s| 64.1s | 2.8X7

Clipping 64 59.0s 30.7s 1 .9X\

* = All of these operations have

no collective communication

Artifacts occur along the
boundaries of domains.

Looking at external faces

— Faces external to a domain can
internal to the data set

- many extra, unneeded faces
- wrong picture with transparen

Solution: mark
unwanted faces
as “‘ghost”

45

Artifacts occur along the
boundaries of domains.

> Interpolation

e Inconsistent values at
nodes along boundary

Solution: make
redundant layer of
“oghost” elements

Ghost data fixes artifacts
along domain boundaries.

* Vislt can generate ghost data on the fly

* Through contracts, Vislt determines necessary

We always get the right picture,

and we do it with the minimum cost

* There are different costs for ghost data:
— Ghost faces: memory

— Ghost elements: memory, collective
communication

Contracts are a simple idea
that have a large impact.

Name Type Default Value
* Contracts: /‘

domains vector<bool> all true

— Just a data structure hasColl- bool false

Commun.

— Describe what

. ghostType enum {None, None
Impact a component

Face, Element}

has on the pipeline [ulEiRuCICHs

> Contracts enable us to avoid the following “dumb” (conservative) strategies:

e Read all data
e Always assume collective communication

e Always create ghost elements

Outline

Data flow networks 101 (3 slides)
VTK (20 slides)

Contracts (10 slides)

An architecture for big data (3 slides)

Vislt employs a parallelized client-
server architecture.

* C(Client-server observations:
— Good for remote visualization
— Leverages available resources
— Scales well
— No need to move data

50

—_—

Paralle VIS resources

remote machine

* Additional design considerations:

Plugins

Multiple Uls: GUI (Qt), CLI (Python),
more...

Third party libraries: VTK, Qt, Python,
Mesa, +1/0 libs

Parallelization covers data input, data processing, and
rendering.
* |dentical data flow

networks on each
pProcessor.

— Networks differentiated

v _
by portion of data they
operate on.
Dt I t o ’)
\ */ | |\ =" “Scattered/gather
_ \ X \ * No distribution (i.e.
Pa;zl::e’l;:ed " x X Data scatter), because scatter is
+ + +—{ Processing done with choice of what
Proc O w:)c ‘)/Proc 2 data to read.
\/ Rendering | ¢ Gather: done when

51 rendering

